

    
      
          
            
  
Welcome to FLEXS’s documentation!

[image: FLEX]
[image: build status]
 [https://github.com/samsinai/FLEXS/actions][image: Documentation Status]
 [https://flexs.readthedocs.io/en/latest/?badge=latest][image: PyPI package]
 [https://pypi.org/project/https://github.com/samsinai/FLEXS/blob/master/flexs/]💪 FLEXS is an open-source simulation environment that enables you to develop and compare model-guided biological sequence design algorithms. This project was developed with support from Dyno Therapeutics [https://www.dynotx.com].


	Installation


	Overview


	Tutorial [https://github.com/samsinai/FLEXS/blob/master/examples/Tutorial.ipynb]


	Contribution and credits


	Components


	Ground truth landscapes


	Noisy oracles


	Exploration algorithms


	Bring your own explorer













Installation

FLEXS is available on PyPI [https://pypi.org/project/flexs/] 🐍 and can be installed with pip install flexs.

There are two optional, but very useful dependencies, ViennaRNA [https://www.tbi.univie.ac.at/RNA/] (for RNA binding landscapes) and PyRosetta [http://www.pyrosetta.org] (for protein design landscapes). These can both be installed with conda:

$ conda install -c bioconda viennarna
$ conda install pyrosetta  # Set up RosettaCommons conda channel first (http://www.pyrosetta.org/dow)





Note that PyRosetta requires a commercial license if not being used for academic purposes.

If contributing or running paper code/experiments, we recommend that you install the dependencies for the sandbox in a conda virtual environment. You can update an existing conda environment with conda env update --name {name} --file environment.yml or initialize a new one with conda env create -f environment.yml. Then install the local version of flexs with pip install -e . in the root directory.




Overview

Biological sequence design through machine-guided directed evolution has been of increasing interest. This process often involves two closely connected steps:


	Models f that attempt to learn the ground truth sequence to function relationship g(x) = y.


	Algorithms that explore the sequence space with the help of the trained model f.





While in some cases, these two steps are learned simultaneously, it is fairly common to have access to a well-trained model f which is not invertible. Namely, given a sequence x, the model can estimate y' (with variable accuracy), but it cannot generate a sequence x' associated with a specific function y. Therefore it is valuable to develop exploration algorithms E(f) that make use of the model f to propose sequences x'.

We implement a simulation environment that allows you to develop or port landscape exploration algorithms for a variety of challenging tasks. Our environment allows you to abstract away the model f = Noisy_abstract_model(g) or employ empirical models (like Keras/Pytorch or Sklearn models). You can see how these work in the **tutorial [https://github.com/samsinai/FLEXS/blob/master/examples/Tutorial.ipynb]**.




Our abstraction is comprised of four levels:


1.  Fitness Landscapes 🏔️

These oracles g are simulators that are assumed as ground truth, i.e. when queried, they return the true value y_i associated with a sequence x_i. Currently we have four classes of ground truth oracles implemented.


	*Transcription factor binding data*. This is comprised of 158 (experimentally) fully characterized landscapes.


	*RNA landscapes*. A set of curated and increasingly challenging RNA binding landscapes as simulated with ViennaRNA.


	*AAV Additive Tropism*. A hypothesized noisy additive protein landscape based on tissue tropism of single mutant AAV2 capsid protein.


	*GFP fluorescence*. Fluorescence of GFP protein as predicted by TAPE transformer model.


	*Rosetta-based design*. Rosetta-based design task for 3MSI anti-freeze protein.




For all landscapes we also provide a fixed set of initial points with different degrees of previous optimization, so that the relative strength of algorithms when starting from locations near or far away from peaks can be evaluated.




2. Noisy oracles

Noisy oracles are (approximate) models f of the original ground truth landscape g. These allow for the exploration algorithm to screen sequences virtually, before committing to making expensive queries to g.  We implement two flavors of these


	Noisy abstract models: Noise corrupted version of g (this allows for independent study of exploration algorithms).


	Empirical models: f is learned directly from the data that was collected so far.







3. Exploration algorithms 🕵️


Exploration algorithms have access to f with some limit on the number of queries to this oracle virtual_screen. Once they have queried that many samples, they would commit to measuring batch_size from the ground truth, which incurrs a real cost. The class base_explorer implements the housekeeping tasks, and new exploration algorithms can be implemented by inheriting from it.







4. Evaluators 📊

We also implement a suite of evaluation modules [https://github.com/samsinai/FLEXS/blob/master/flexs/evaluate.py] that automatically collect data that is necessary for evaluating algorithms on different performance criteria.


	robustness: Produces data for analyzing how explorer performance changes given different quality of models.


	efficiency: Produces data for analyzing how explorer performance changes when more computational evaluations are allowed.


	adaptivity: Produces data for analyzing how the explorer is sensitive to the number of batches it is allowed to sample, given a fixed total budget.




See the tutorial [https://github.com/samsinai/FLEXS/blob/master/examples/Tutorial.ipynb] for an example of how these can be run.






Contributions and credits 🤩

Your PR and contributions to this sandbox are most welcome. If you make use of data or algorithms in this sandbox, please ensure that you cite the relevant original articles upon which this work was made possible (we provide links in this readme). To cite the sandbox itself:

@article{sinai2020adalead,
  title={AdaLead: A simple and robust adaptive greedy search algorithm for sequence design},
  author={Sinai, Sam and Wang, Richard and Whatley, Alexander and Slocum, Stewart and Locane, Elina and Kelsic, Eric},
  journal={arXiv preprint},
  year={2020}
}





FLEXS 0.2.1 was developed by Sam Sinai, Richard Wang, Alexander Whatley, Elina Locane, and Stewart Slocum.




Components


Transcription Factor Binding

Barrera et al. (2016) surveyed the binding affinity of more than one hundred and fifty transcription factors (TF) to all possible DNA sequences of length 8. Since the ground truth is entirely characterized, and biological, it is a relevant benchmark for our purpose. These generate the full picture for landscapes of size 4^8. We shift the function distribution such that y is within [0,1], and therefore optimal(y)=1. We also provide 15 initiation sequences with different degrees of optimization across landscapes. The sequence TTAATTAA for instance is a famous binding site that is a global peak in 20 of these landscapes, and a local peak (above all its single mutant neighbors) in 96 landscapes overall. GCTCGAGC is a local peak in 106 landscapes, whereas AAAGAGAG is not a peak in any of the 158 landscapes. It is notable that while complete, these landscapes are generally easy to optimize on due to their size. So we recommend that they are tested in very low-budget setting or additional classes of landscapes are used for benchmarking.

@article{barrera2016survey,
  title={Survey of variation in human transcription factors reveals prevalent DNA binding changes},
  author={Barrera, Luis A and Vedenko, Anastasia and Kurland, Jesse V and Rogers, Julia M and Gisselbrecht, Stephen S and Rossin, Elizabeth J and Woodard, Jaie and Mariani, Luca and Kock, Kian Hong and Inukai, Sachi and others},
  journal={Science},
  volume={351},
  number={6280},
  pages={1450--1454},
  year={2016},
  publisher={American Association for the Advancement of Science}
}








RNA Landscapes

Predicting RNA secondary structures is a well-studied problem. There are efficient and accurate dynamic programming approaches to calculates secondary structure of short RNA sequences. These landscapes give us a good proxy for a consistent oracle over entire domain of large landscapes.  We use the ViennaRNA [https://www.tbi.univie.ac.at/RNA/] package to simulate binding landscapes of RNA sequences as a ground truth oracle.

Our sandbox allows for constructing arbitrarily complex landscapes (although we discourage large RNA sequences as the accuracy of the simulator deteriorates above 200 nucleotides). As benchmark, we provide a series of 36 increasingly complex RNA binding landscapes. These landscapes each come with at least 5 suggested starting sequences, with various initial optimization.

The simplest landscapes are binding landscapes with a single hidden target (often larger than the design sequence resulting in multiple peaks). The designed sequences is meant to be optimized to bind the target with the minimum binding energy (we use duplex energy as our objective). We estimate optimal(y) by computing the binding energy of the perfect complement of the target and normalize the fitnesses using that measure (hence this is only an approximation and often a slight underestimate). RNA landscapes show many local peaks, and often multiple global peaks due to symmetry.

Additionally, we construct more complex landscapes by increasing the number of hidden targets, enforcing specific conservation patterns, and composing the scores of each landscapes multiplicatively. See multi-dimensional models [https://github.com/samsinai/FLEXS/blob/master/flexs/ensemble.py] for the generic class that allows composing landscapes.

@article{lorenz2011viennarna,
  title={{ViennaRNA} Package 2.0},
  author={Lorenz, Ronny and Bernhart, Stephan H and Zu Siederdissen, Christian H{\"o}ner and Tafer, Hakim and Flamm, Christoph and Stadler, Peter F and Hofacker, Ivo L},
  journal={Algorithms for molecular biology},
  volume={6},
  number={1},
  pages={26},
  year={2011},
  publisher={Springer}
}








Additive AAV landscapes


Ogden et al. (2019) perform a comprehensive single mutation scan of AAV2 capsid protein, assaying tropism for five different target tissues. The authors show that an additive model is informative about the local structure of the landscape. Here we use the data from the single mutations to generate a toy additive model. Here y' := sum(s_i)+ e, where i indicates the position across the sequences, and s_i indicates a sequence with mutation s at position i and e indicates iid Gaussian noise. This construct is also known as “Rough Mt. Fuji” (RMF) and many empirical fitness landscapes are consistent with an RMF local structure around viable natural sequences with unpredictable regions in between. In the noise-free setting, the RMF landscape is convex with a single peak. We allow the construction of multiple target tissues, and different design lengths (tasks ranging from desiging short region of the protein to tasks that encompass designing the full protein). The scores are normalized between [0,1].




@article{ogden2019comprehensive,
  title={Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design},
  author={Ogden, Pierce J and Kelsic, Eric D and Sinai, Sam and Church, George M},
  journal={Science},
  volume={366},
  number={6469},
  pages={1139--1143},
  year={2019},
  publisher={American Association for the Advancement of Science}
}








GFP


In TAPE [https://github.com/songlab-cal/tape], the authors benchmark multiple machine learning methods on a set of tasks including GFP fluorescence prediction. The GFP task is comprised of training and predicting fluorescence values on approximately 52,000 protein sequences of length 238 which are derived from the naturally occurring GFP in Aequorea victoria (See this paper [https://www.nature.com/articles/nature17995]). Downloading and doing inference with this model is memory and time intensive. These landscapes are not normalized and therefore scores higher than 1 are possible (we do not know the maximum activation for the model).




@inproceedings{tape2019,
    author = {Rao, Roshan and Bhattacharya, Nicholas and Thomas, Neil and Duan, Yan and Chen, Xi and Canny, John and Abbeel, Pieter and Song, Yun S},
    title = {Evaluating Protein Transfer Learning with TAPE},
    booktitle = {Advances in Neural Information Processing Systems}
    year = {2019}
}

@article{sarkisyan2016local,
  title={Local fitness landscape of the green fluorescent protein},
  author={Sarkisyan, Karen S and Bolotin, Dmitry A and Meer, Margarita V and Usmanova, Dinara R and Mishin, Alexander S and Sharonov, George V and Ivankov, Dmitry N and Bozhanova, Nina G and Baranov, Mikhail S and Soylemez, Onuralp and others},
  journal={Nature},
  volume={533},
  number={7603},
  pages={397--401},
  year={2016},
  publisher={Nature Publishing Group}
}








Rosetta-based Design

Rosetta [https://www.rosettacommons.org/software] is a protein modeling software suite used for de novo design and structure prediction. Based on the principle that structure determines function, the Rosetta design process begins with a desired 3-D protein conformation and tries to find amino acid sequences that are likely to fold to that structure. While the dynamics of protein folding are still poorly understood, this approach has proven remarkably effective in practice, and so we find it an acceptable analogue to the true fitness landscape. To keep our experiments computationally feasible, we omit the expensive step of side-chain packing and use the simplified centroid scoring frounction as our objective. We use the PyRosetta [http://www.pyrosetta.org] Python interface to Rosetta. The Rosetta design objective function is a scaled estimate of the folding energy, which has been found to be an indicator of the probability that a sequence will fold to the desired structure. As an example, we provide an optimization challenge for the structure of 3MSI, a 66 amino acid antifreeze protein found in the ocean pout starting from 5 sequences with 3-27 mutations from the wildtype. Here, we normalize energy scores by scaling and shifting their distribution and then applying the sigmoid function.

@article{chaudhury2010pyrosetta,
  title={PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta},
  author={Chaudhury, Sidhartha and Lyskov, Sergey and Gray, Jeffrey J},
  journal={Bioinformatics},
  volume={26},
  number={5},
  pages={689--691},
  year={2010},
  publisher={Oxford University Press}
}






Noisy Oracles






Noisy Abstract Models

These models get access to the ground truth g, but do not allow the explorer to access g directly. They corrupt the signal from g but adding noise to it, proportional to the distance of the query from the (nearest) observed data. The parameter signal_strength which is between 0 (no signal) and 1 (perfect model) determines the rate of decay.




Empirical Models

These models train a standard algorithm on the observed data. Some baseline models can be found in https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/models. All landscapes and models can also be ensembled using the ensemble class [https://github.com/samsinai/FLEXS/blob/master/flexs/ensemble.py]. Ensembles also have the ability to be adaptive i.e. the models within an ensemble will be reweighted based on their accuracy on the last measured set.


Exploration Algorithms






Bring your own explorer

Exploration algorithms are search methods that use noisy oracles to select the next batch of samples from the landscape. This is the main service of this sandbox, you can implement your own explorer by simply inheriting from the Base Explorer [https://github.com/samsinai/FLEXS/blob/master/flexs/explorer.py], and implementing a single method:

class MyExplorer(flexs.Explorer):
    """Your explorer here"""
    def __init__(self,
                 model,
                 rounds,
                 starting_sequence,
                 sequences_batch_size,
                 model_queries_per_batch,
                 **kwargs):

        name = f"MyExplorer_{**kwargs}"
        super().__init__(
            model,
            name,
            rounds,
            sequences_batch_size,
            model_queries_per_batch,
            starting_sequence,
        )
        "Your custom attributes here"

    def propose_sequences(self, measured_sequences_data):
        """
        Your method implementation overriding the main explorer.
        It is allowed to make *model_queries_per_batch* queries to the model
        and make *sequences_batch_size* proposals in return.
        """

        return sequences, scores








Baseline Explorers


	Random Explorer [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/random.py]: A baseline random explorer.







Evolutionary Algorithms


	Naive Genetic Algorithm, Wright-Fisher [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/genetic_algorithm.py]: A standard Wright-Fisher process that has access to an oracle for pre-screening.


	CMA-ES [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/cmaes.py]: The CMA-ES algorithm that optimizes a continuous relaxation of one-hot vectors encoding sequences (another evolutionary baseline).


	ADALEAD [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/adalead.py] ⭐️: ADALEAD is our recommended “benchmark” algorithm as it is robust to hyperparameters, and is relatively fast in execution. It also compares strongly to other state of the art algorithms.




@article{sinai2020adalead,
  title={AdaLead: A simple and robust adaptive greedy search algorithm for sequence design},
  author={Sinai, Sam and Wang, Richard and Whatley, Alexander and Slocum, Stewart and Locane, Elina and Kelsic, Eric},
  journal={arXiv preprint},
  year={2020}
}








DbAS and CbAS


	CbAS and DbAS [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/explorers/cbas_dbas.py]




@article{brookes2019conditioning,
  title={Conditioning by adaptive sampling for robust design},
  author={Brookes, David H and Park, Hahnbeom and Listgarten, Jennifer},
  journal={arXiv preprint arXiv:1901.10060},
  year={2019}
}
@article{brookes2018design,
  title={Design by adaptive sampling},
  author={Brookes, David H and Listgarten, Jennifer},
  journal={arXiv preprint arXiv:1810.03714},
  year={2018}
}








Reinforcement Learning Algorithms


	DQN [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/dqn_explorer.py]


	PPO [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/ppo.py]


	DyNAPPO [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/dyna_ppo.py]: See the following citation.

@inproceedings{angermueller2019model,
title={Model-based reinforcement learning for biological sequence design},
author={Angermueller, Christof and Dohan, David and Belanger, David and Deshpande, Ramya and Murphy, Kevin and Colwell, Lucy},
booktitle={International Conference on Learning Representations},
year={2019}
}












Bayesian Optimization


	Evolutionary/Enumerative BO [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/bo.py]: Bayesian optimization with sparse sampling of the mutation space. A fully enumerated (when possible) is also implemented mutation space.











API Documentation



	flexs
	flexs.ensemble

	flexs.evaluate

	flexs.explorer

	flexs.landscape

	flexs.model

	flexs.types

	flexs.baselines
	flexs.baselines.explorers
	flexs.baselines.explorers.adalead

	flexs.baselines.explorers.bo

	flexs.baselines.explorers.cbas_dbas

	flexs.baselines.explorers.cmaes

	flexs.baselines.explorers.dqn

	flexs.baselines.explorers.dyna_ppo

	flexs.baselines.explorers.genetic_algorithm

	flexs.baselines.explorers.ppo

	flexs.baselines.explorers.random

	flexs.baselines.explorers.environments





	flexs.baselines.models
	flexs.baselines.models.adaptive_ensemble

	flexs.baselines.models.cnn

	flexs.baselines.models.global_epistasis_model

	flexs.baselines.models.keras_model

	flexs.baselines.models.mlp

	flexs.baselines.models.noisy_abstract_model

	flexs.baselines.models.sklearn_models









	flexs.landscapes
	flexs.landscapes.additive_aav_packaging

	flexs.landscapes.bert_gfp

	flexs.landscapes.rna

	flexs.landscapes.rosetta

	flexs.landscapes.tf_binding





	flexs.utils
	flexs.utils.VAE_utils

	flexs.utils.replay_buffers

	flexs.utils.sequence_utils
















Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
flexs

The FLEXS (Fitness Landscape EXploration Sandbox) package.



	flexs.ensemble

	flexs.evaluate

	flexs.explorer

	flexs.landscape

	flexs.model

	flexs.types







	flexs.baselines
	flexs.baselines.explorers
	flexs.baselines.explorers.adalead

	flexs.baselines.explorers.bo

	flexs.baselines.explorers.cbas_dbas

	flexs.baselines.explorers.cmaes

	flexs.baselines.explorers.dqn

	flexs.baselines.explorers.dyna_ppo

	flexs.baselines.explorers.genetic_algorithm

	flexs.baselines.explorers.ppo

	flexs.baselines.explorers.random

	flexs.baselines.explorers.environments





	flexs.baselines.models
	flexs.baselines.models.adaptive_ensemble

	flexs.baselines.models.cnn

	flexs.baselines.models.global_epistasis_model

	flexs.baselines.models.keras_model

	flexs.baselines.models.mlp

	flexs.baselines.models.noisy_abstract_model

	flexs.baselines.models.sklearn_models









	flexs.landscapes
	flexs.landscapes.additive_aav_packaging

	flexs.landscapes.bert_gfp

	flexs.landscapes.rna

	flexs.landscapes.rosetta

	flexs.landscapes.tf_binding





	flexs.utils
	flexs.utils.VAE_utils

	flexs.utils.replay_buffers

	flexs.utils.sequence_utils













          

      

      

    

  

    
      
          
            
  
flexs.ensemble

Defines the Ensemble class.


	
class flexs.ensemble.Ensemble(models, combine_with=<function Ensemble.<lambda>>)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/ensemble.py]

	Bases: flexs.model.Model

Class to ensemble models or landscapes together.


	
models[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/ensemble.py]

	List of landscapes/models being ensembled.


	Type

	List[flexs.Landscape]










	
combine_with[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/ensemble.py]

	Function to combine ensemble
predictions.


	Type

	Callable[[np.ndarray], np.ndarray]










	
train(sequences, labels)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/ensemble.py]

	Train each model in self.models.


	Parameters

	
	sequences (Union[List[str], ndarray]) – Training sequences


	labels (ndarray) – Training labels




















          

      

      

    

  

    
      
          
            
  
flexs.evaluate

A small set of evaluation metrics to benchmark explorers.


	
flexs.evaluate.adaptivity(landscape, make_explorer, num_rounds=[1, 10, 100], total_ground_truth_measurements=1000, total_model_queries=10000)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/evaluate.py]

	For a fixed total budget of ground truth measurements and model queries,
run with different numbers of rounds.


	Parameters

	
	landscape (Landscape) – Ground truth fitness landscape.


	make_explorer (Callable[[int, int, int], Explorer]) – A function that takes in a number of rounds, a
sequences_batch_size and a model_queries_per_batch and returns an
explorer.


	num_rounds (List[int]) – A list of number of rounds to run the explorer with.


	total_ground_truth_measurements (int) – Total number of ground truth measurements
across all rounds (sequences_batch_size * rounds).


	total_model_queries (int) – Total number of model queries across all rounds
(model_queries_per_round * rounds).













	
flexs.evaluate.efficiency(landscape, make_explorer, budgets=[(100, 500), (100, 5000), (1000, 5000), (1000, 10000)])[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/evaluate.py]

	Evaluate explorer outputs as a function of the number of allowed ground truth
measurements and model queries per round.


	Parameters

	
	landscape (Landscape) – Ground truth fitness landscape.


	make_explorer (Callable[[int, int], Explorer]) – A function that takes in a sequences_batch_size and
a model_queries_per_batch and returns an explorer.


	budgets (List[Tuple[int, int]]) – A list of tuples (sequences_batch_size, model_queries_per_batch).













	
flexs.evaluate.robustness(landscape, make_explorer, signal_strengths=[0, 0.5, 0.75, 0.9, 1], verbose=True)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/evaluate.py]

	Evaluate explorer outputs as a function of the noisyness of its model.

It runs the same explorer with flexs.NoisyAbstractModel’s of different
signal strengths.


	Parameters

	
	landscape (Landscape) – The landscape to run on.


	make_explorer (Callable[[Model, float], Explorer]) – A function that takes in a model and signal strength
(for potential bookkeeping/logging purposes) and an explorer.


	signal_strengths (List[float]) – A list of signal strengths between 0 and 1.
















          

      

      

    

  

    
      
          
            
  
flexs.explorer

Defines abstract base explorer class.


	
class flexs.explorer.Explorer(model, name, rounds, sequences_batch_size, model_queries_per_batch, starting_sequence, log_file=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/explorer.py]

	Bases: abc.ABC

Abstract base explorer class.

Run explorer through the run method. Implement subclasses
by overriding propose_sequences (do not override run).


	
abstract propose_sequences(measured_sequences_data)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/explorer.py]

	Propose a list of sequences to be measured in the next round.

This method will be overriden to contain the explorer logic for each explorer.


	Parameters

	
	measured_sequences_data (DataFrame) – A pandas dataframe of all sequences that have been


	by the ground truth so far. Has columns "sequence", (measured) – 


	"model_score", and "round". ("true_score",) – 






	Return type

	Tuple[ndarray, ndarray]



	Returns

	
	A tuple containing the proposed sequences and their scores
	(according to the model).
















	
run(landscape, verbose=True)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/explorer.py]

	Run the exporer.


	Parameters

	
	landscape (Landscape) – Ground truth fitness landscape.


	verbose (bool) – Whether to print output or not.






	Return type

	Tuple[DataFrame, Dict]

















          

      

      

    

  

    
      
          
            
  
flexs.landscape

Defines the Landscape class.


	
class flexs.landscape.Landscape(name)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscape.py]

	Bases: abc.ABC

Base class for all landscapes and for flexs.Model.


	
cost[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscape.py]

	Number of sequences whose fitness has been evaluated.


	Type

	int










	
name[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscape.py]

	A human-readable name for the landscape (often contains
parameter values in the name) which is used when logging explorer runs.


	Type

	str










	
get_fitness(sequences)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscape.py]

	Score a list/numpy array of sequences.

This public method should not be overriden – new landscapes should
override the private _fitness_function method instead. This method
increments self.cost and then calls and returns _fitness_function.


	Parameters

	sequences (Union[List[str], ndarray]) – A list/numpy array of sequence strings to be scored.



	Return type

	ndarray



	Returns

	Scores for each sequence.

















          

      

      

    

  

    
      
          
            
  
flexs.model

Defines base Model class.


	
class flexs.model.LandscapeAsModel(landscape)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/model.py]

	Bases: flexs.model.Model

This simple class wraps a flexs.Landscape in a flexs.Model to allow running
experiments against a perfect model.

This class’s _fitness_function simply calls the landscape’s _fitness_function.


	
train(sequences, labels)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/model.py]

	No-op.










	
class flexs.model.Model(name)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/model.py]

	Bases: flexs.landscape.Landscape, abc.ABC

Base model class. Inherits from flexs.Landscape and adds an additional
train method.


	
abstract train(sequences, labels)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/model.py]

	Train model.

This function is called whenever you would want your model to update itself
based on the set of sequences it has measurements for.













          

      

      

    

  

    
      
          
            
  
flexs.types

Types definitions for the flexs package.





          

      

      

    

  

    
      
          
            
  
flexs.baselines

Baselines module containing robust implementations
of various models and explorers.



	flexs.baselines.explorers
	flexs.baselines.explorers.adalead

	flexs.baselines.explorers.bo

	flexs.baselines.explorers.cbas_dbas

	flexs.baselines.explorers.cmaes

	flexs.baselines.explorers.dqn

	flexs.baselines.explorers.dyna_ppo

	flexs.baselines.explorers.genetic_algorithm

	flexs.baselines.explorers.ppo

	flexs.baselines.explorers.random

	flexs.baselines.explorers.environments
	flexs.baselines.explorers.environments.dyna_ppo

	flexs.baselines.explorers.environments.ppo









	flexs.baselines.models
	flexs.baselines.models.adaptive_ensemble

	flexs.baselines.models.cnn

	flexs.baselines.models.global_epistasis_model

	flexs.baselines.models.keras_model

	flexs.baselines.models.mlp

	flexs.baselines.models.noisy_abstract_model

	flexs.baselines.models.sklearn_models













          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers

FLEXS explorers module



	flexs.baselines.explorers.adalead

	flexs.baselines.explorers.bo

	flexs.baselines.explorers.cbas_dbas

	flexs.baselines.explorers.cmaes

	flexs.baselines.explorers.dqn

	flexs.baselines.explorers.dyna_ppo

	flexs.baselines.explorers.genetic_algorithm

	flexs.baselines.explorers.ppo

	flexs.baselines.explorers.random







	flexs.baselines.explorers.environments
	flexs.baselines.explorers.environments.dyna_ppo

	flexs.baselines.explorers.environments.ppo













          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.adalead

Defines the Adalead explorer class.


	
class flexs.baselines.explorers.adalead.Adalead(model, rounds, sequences_batch_size, model_queries_per_batch, starting_sequence, alphabet, mu=1, recomb_rate=0, threshold=0.05, rho=0, eval_batch_size=20, log_file=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/adalead.py]

	Bases: flexs.explorer.Explorer

Adalead explorer.


	Algorithm works as follows:
	
	Initialize set of top sequences whose fitnesses are at least
	(1 - threshold) of the maximum fitness so far



	While we can still make model queries in this batch
	Recombine top sequences and append to parents
Rollout from parents and append to mutants










	
propose_sequences(measured_sequences)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/adalead.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]

















          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.bo

BO explorer.


	
class flexs.baselines.explorers.bo.BO(model, rounds, sequences_batch_size, model_queries_per_batch, starting_sequence, alphabet, log_file=None, method='EI', recomb_rate=0)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Bases: flexs.explorer.Explorer

Evolutionary Bayesian Optimization (Evo_BO) explorer.


	Algorithm works as follows:
	
	for N experiment rounds
	
	recombine samples from previous batch if it exists and measure them,
	otherwise skip





Thompson sample starting sequence for new batch
while less than B samples in batch


Generate model_queries_per_batch/sequences_batch_size samples
If variance of ensemble models is above twice that of the starting


sequence




Thompson sample another starting sequence













	
EI(vals)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Compute expected improvement.






	
static Thompson_sample(measured_batch)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Pick a sequence via Thompson sampling.






	
static UCB(vals)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Upper confidence bound.






	
initialize_data_structures()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Initialize.






	
pick_action(all_measured_seqs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Pick action.






	
propose_sequences(measured_sequences)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]










	
sample_actions()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Sample actions resulting in sequences to screen.






	
train_models()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Train the model.










	
class flexs.baselines.explorers.bo.GPR_BO(model, rounds, sequences_batch_size, model_queries_per_batch, starting_sequence, alphabet, log_file=None, seq_proposal_method='Thompson')[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Bases: flexs.explorer.Explorer

Explorer using GP-based Bayesian Optimization.

Uses Gaussian process with RBF kernel on black box function.
IMPORTANT: This explorer is not limited by any virtual screening restriction,
and is used to find the unrestricted performance of Bayesian Optimization
techniques in small landscapes.

Reference: http://krasserm.github.io/2018/03/21/bayesian-optimization/


	
propose_sequences(measured_sequences)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Propose batch_size samples.


	Return type

	Tuple[ndarray, ndarray]










	
propose_sequences_via_greedy()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Propose a batch of new sequences.

Based on greedy in the expectation of the Gaussian posterior.






	
propose_sequences_via_thompson()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Propose a batch of new sequences.
Based on Thompson sampling with a Gaussian posterior.






	
propose_sequences_via_ucb()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Propose a batch of new sequences.
Based on upper confidence bound.






	
reset()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/bo.py]

	Reset.













          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.cbas_dbas

CbAS and DbAS explorers.


	
class flexs.baselines.explorers.cbas_dbas.CbAS(model, generator, rounds, starting_sequence, sequences_batch_size, model_queries_per_batch, alphabet, algo='cbas', Q=0.7, cycle_batch_size=100, mutation_rate=0.2, log_file=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/cbas_dbas.py]

	Bases: flexs.explorer.Explorer

CbAS and DbAS explorers.


	
propose_sequences(measured_sequences_data)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/cbas_dbas.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]

















          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.cmaes

CMAES explorer.


	
class flexs.baselines.explorers.cmaes.CMAES(model, rounds, sequences_batch_size, model_queries_per_batch, starting_sequence, alphabet, population_size=15, max_iter=400, initial_variance=0.2, log_file=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/cmaes.py]

	Bases: flexs.explorer.Explorer

An explorer which implements the covariance matrix adaptation evolution
strategy (CMAES).

Optimizes a continuous relaxation of the one-hot sequence that we use to
construct a normal distribution around, sample from, and then argmax to get
sequences for the objective function.

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/ is a helpful guide.


	
propose_sequences(measured_sequences)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/cmaes.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]

















          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.dqn

DQN explorer.


	
class flexs.baselines.explorers.dqn.DQN(model, rounds, sequences_batch_size, model_queries_per_batch, starting_sequence, alphabet, log_file=None, memory_size=100000, train_epochs=20, gamma=0.9, device='cpu')[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Bases: flexs.explorer.Explorer

DQN explorer class.

DQN Explorer implementation, based off
https://colab.research.google.com/drive/1NsbSPn6jOcaJB_mp9TmkgQX7UrRIrTi0.

Algorithm works as follows:
for N experiment rounds


collect samples with policy
policy updates using Q network:


Q(s, a) <- Q(s, a) + alpha * (R(s, a) + gamma * max Q(s, a) - Q(s, a))








	
calculate_next_q_values(state_v)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Calculate the next Q values.






	
get_action_and_mutant(epsilon)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Return an action and the resulting mutant.






	
initialize_data_structures()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Initialize internal data structures.






	
pick_action(all_measured_seqs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Pick an action.

Generates a new string representing the state, along with its associated reward.






	
propose_sequences(measured_sequences_data)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]










	
q_network_loss(batch)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Calculate MSE.

Computes between actual state action values, and expected state action values
from DQN.






	
sample()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Sample a random batch_size subset of the memory.






	
train_actor(train_epochs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Train the Q Network.










	
class flexs.baselines.explorers.dqn.Q_Network(sequence_len, alphabet_len)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Bases: torch.nn.modules.module.Module

Q Network implementation, used in DQN Explorer.


	
forward(x)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Take a forward step.






	
training = None[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	








	
flexs.baselines.explorers.dqn.build_q_network(sequence_len, alphabet_len, device)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dqn.py]

	Build the Q Network.









          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.dyna_ppo

DyNA-PPO explorer.


	
class flexs.baselines.explorers.dyna_ppo.DynaPPO(landscape, rounds, sequences_batch_size, model_queries_per_batch, starting_sequence, alphabet, log_file=None, model=None, num_experiment_rounds=10, num_model_rounds=1, env_batch_size=4)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dyna_ppo.py]

	Bases: flexs.explorer.Explorer

Explorer which implements DynaPPO.


	This RL-based sequence design algorithm works as follows:
	
	for r in rounds:
	train_policy(experimental_data_rewards[r])
for m in model_based_rounds:


train_policy(model_fitness_rewards[m])












An episode for the agent begins with an empty sequence, and at
each timestep, one new residue is generated and added to the sequence
until the desired length of the sequence is reached. The reward
is zero at all timesteps until the last one, when the reward is
reward = lambda * sequence_density + sequence_fitness where
sequence density is the density of nearby sequences already proposed.

As described above, this explorer generates sequences constructively.

Paper: https://openreview.net/pdf?id=HklxbgBKvr


	
add_last_seq_in_trajectory(experience, new_seqs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dyna_ppo.py]

	Add the last sequence in an episode’s trajectory.

Given a trajectory object, checks if the object is the last in the trajectory.
Since the environment ends the episode when the score is non-increasing, it
adds the associated maximum-valued sequence to the batch.

If the episode is ending, it changes the “current sequence” of the environment
to the next one in last_batch, so that when the environment resets, mutants
are generated from that new sequence.






	
propose_sequences(measured_sequences_data)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dyna_ppo.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]














	
class flexs.baselines.explorers.dyna_ppo.DynaPPOEnsemble(seq_len, alphabet, r_squared_threshold=0.5, models=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dyna_ppo.py]

	Bases: flexs.model.Model

Ensemble from DyNAPPO paper.

Ensembles many models together but only uses those with an $r^2$ above
a certain threshold (on validation data) at test-time.


	
train(sequences, labels)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dyna_ppo.py]

	Train the ensemble, calculating $r^2$ values on a holdout set.










	
class flexs.baselines.explorers.dyna_ppo.DynaPPOMutative(landscape, rounds, sequences_batch_size, model_queries_per_batch, starting_sequence, alphabet, log_file=None, model=None, num_experiment_rounds=10, num_model_rounds=1)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dyna_ppo.py]

	Bases: flexs.explorer.Explorer

Explorer which implements DynaPPO.

Note that unlike the other DynaPPO explorer, this one is mutative rather than
constructive. Specifically, instead of starting from an empty sequence
and generating residues one-by-one, this explorer starts from a complete
sequence (fitness thresholds to start with good sequences) and mutates it
until the mutant’s fitness has started to decrease. Then it ends the episode.

This has proven to be a stronger algorithm than the original DyNAPPO.

Paper: https://openreview.net/pdf?id=HklxbgBKvr


	
add_last_seq_in_trajectory(experience, new_seqs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dyna_ppo.py]

	Add the last sequence in an episode’s trajectory.

Given a trajectory object, checks if the object is the last in the trajectory.
Since the environment ends the episode when the score is non-increasing, it
adds the associated maximum-valued sequence to the batch.

If the episode is ending, it changes the “current sequence” of the environment
to the next one in last_batch, so that when the environment resets, mutants
are generated from that new sequence.






	
propose_sequences(measured_sequences_data)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/dyna_ppo.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]

















          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.genetic_algorithm

Define a baseline genetic algorithm implementation.


	
class flexs.baselines.explorers.genetic_algorithm.GeneticAlgorithm(model, rounds, starting_sequence, sequences_batch_size, model_queries_per_batch, alphabet, population_size, parent_selection_strategy, children_proportion, log_file=None, parent_selection_proportion=None, beta=None, seed=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/genetic_algorithm.py]

	Bases: flexs.explorer.Explorer

A genetic algorithm explorer with single point mutations and recombination.

Based on the parent_selection_strategy, this class implements one of three
genetic algorithms:



	If parent_selection_strategy == ‘top-k’, we have a traditional
genetic algorithm where the top-k scoring sequences in the
population become parents.


	If parent_selection_strategy == ‘wright-fisher’, we have a
genetic algorithm based off of the Wright-Fisher model of evolution,
where members of the population become parents with a probability
exponential to their fitness (softmax the scores then sample).








	
propose_sequences(measured_sequences)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/genetic_algorithm.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]

















          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.ppo

PPO explorer.


	
class flexs.baselines.explorers.ppo.PPO(model, rounds, sequences_batch_size, model_queries_per_batch, starting_sequence, alphabet, log_file=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/ppo.py]

	Bases: flexs.explorer.Explorer

Explorer which uses PPO.


	The algorithm is:
	
	for N experiment rounds
	collect samples with policy
train policy on samples









A simpler baseline than DyNAPPOMutative with similar performance.


	
add_last_seq_in_trajectory(experience, new_seqs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/ppo.py]

	Add the last sequence in an episode’s trajectory.

Given a trajectory object, checks if the object is the last in the trajectory.
Since the environment ends the episode when the score is non-increasing, it
adds the associated maximum-valued sequence to the batch.

If the episode is ending, it changes the “current sequence” of the environment
to the next one in last_batch, so that when the environment resets, mutants
are generated from that new sequence.






	
propose_sequences(measured_sequences_data)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/ppo.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]

















          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.random

Defines the Random explorer class.


	
class flexs.baselines.explorers.random.Random(model, rounds, starting_sequence, sequences_batch_size, model_queries_per_batch, alphabet, mu=1, elitist=False, seed=None, log_file=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/random.py]

	Bases: flexs.explorer.Explorer

A simple random explorer.

Chooses a random previously measured sequence and mutates it.

A good baseline to compare other search strategies against.

Since random search is not data-driven, the model is only used to score
sequences, but not to guide the search strategy.


	
propose_sequences(measured_sequences)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/random.py]

	Propose top sequences_batch_size sequences for evaluation.


	Return type

	Tuple[ndarray, ndarray]

















          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.environments

Reinforcement learning environments for DynaPPO and PPO explorers.



	flexs.baselines.explorers.environments.dyna_ppo

	flexs.baselines.explorers.environments.ppo









          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.environments.dyna_ppo

DyNA-PPO environment module.


	
class flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironment(alphabet, seq_length, model, landscape, batch_size)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Bases: tf_agents.environments.py_environment.PyEnvironment

DyNA-PPO environment based on TF-Agents.


	
action_spec()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Define agent actions.






	
property batch_size[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Tf-agents property that return env batch size.






	
batched()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Tf-agents function that says that this env returns batches of timesteps.






	
get_cached_fitness(seq)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Get cached sequence fitness computed in previous episodes.






	
observation_spec()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Define environment observations.






	
sequence_density(seq)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Get average distance to seq out of all observed sequences.






	
set_fitness_model_to_gt(fitness_model_is_gt)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Set the fitness model to the ground truth landscape or to the model.

Call with True when doing an experiment-based training round
and call with False when doing a model-based training round.






	
time_step_spec()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Define time steps.










	
class flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironmentMutative(alphabet, starting_seq, model, landscape, max_num_steps)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Bases: tf_agents.environments.py_environment.PyEnvironment

DyNA-PPO environment based on TF-Agents.

Note that unlike the other DynaPPO environment, this one is mutative rather than
constructive.


	
action_spec()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Define agent actions.






	
get_state_string()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Get sequence representing current state.






	
observation_spec()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Define environment observations.






	
sequence_density(seq)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Get average distance to seq out of all observed sequences.






	
set_fitness_model_to_gt(fitness_model_is_gt)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/dyna_ppo.py]

	Set the fitness model to the ground truth landscape or to the model.

Call with True when doing an experiment-based training round
and call with False when doing a model-based training round.













          

      

      

    

  

    
      
          
            
  
flexs.baselines.explorers.environments.ppo

PPO environment module.


	
class flexs.baselines.explorers.environments.ppo.PPOEnvironment(alphabet, starting_seq, model, max_num_steps)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/ppo.py]

	Bases: tf_agents.environments.py_environment.PyEnvironment

PPO environment based on TF-Agents.


	
action_spec()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/ppo.py]

	Define agent actions.






	
get_state_string()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/ppo.py]

	Get sequence representing current state.






	
observation_spec()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/explorers/environments/ppo.py]

	Define environment observations.













          

      

      

    

  

    
      
          
            
  
flexs.baselines.models

baselines.models module.



	flexs.baselines.models.adaptive_ensemble

	flexs.baselines.models.cnn

	flexs.baselines.models.global_epistasis_model

	flexs.baselines.models.keras_model

	flexs.baselines.models.mlp

	flexs.baselines.models.noisy_abstract_model

	flexs.baselines.models.sklearn_models









          

      

      

    

  

    
      
          
            
  
flexs.baselines.models.adaptive_ensemble

Defines the AdaptiveEnsemble model.


	
class flexs.baselines.models.adaptive_ensemble.AdaptiveEnsemble(models, combine_with='sum', adapt_weights_with='r2_weights', adaptive_val_size=0.2)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/adaptive_ensemble.py]

	Bases: flexs.model.Model

Ensemble class that weights individual model predictions adaptively,
according to some reweighting function.


	
train(sequences, labels)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/adaptive_ensemble.py]

	Train each model in the ensemble and then adaptively reweight them
according to adapt_weights_with.


	Parameters

	
	sequences (Union[List[str], ndarray]) – Training sequences.


	lables – Training sequence labels.

















	
flexs.baselines.models.adaptive_ensemble.r2_weights(model_preds, labels)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/adaptive_ensemble.py]

	
	Parameters

	
	model_preds (ndarray) – A numpy array of shape (num_models, num_samples) containing
model predictions.


	labels (ndarray) – A numpy array of true labels.






	Return type

	ndarray



	Returns

	A numpy array of shape (num_models,) containing $r^2$ scores for models.













          

      

      

    

  

    
      
          
            
  
flexs.baselines.models.cnn

Define a baseline CNN Model.


	
class flexs.baselines.models.cnn.CNN(seq_len, num_filters, hidden_size, alphabet, loss='MSE', name=None, batch_size=256, epochs=20)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/cnn.py]

	Bases: flexs.baselines.models.keras_model.KerasModel

A baseline CNN model with 3 conv layers and 2 dense layers.









          

      

      

    

  

    
      
          
            
  
flexs.baselines.models.global_epistasis_model

Define a global epistasis model.


	
class flexs.baselines.models.global_epistasis_model.GlobalEpistasisModel(seq_len, hidden_size, alphabet, loss='MSE', name=None, batch_size=256, epochs=20)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/global_epistasis_model.py]

	Bases: flexs.baselines.models.keras_model.KerasModel

Global epistasis model.

Weighted sum of input features follow by several dense layers.
A simple, but relatively uneffective nonlinear model.









          

      

      

    

  

    
      
          
            
  
flexs.baselines.models.keras_model

Define the base KerasModel class.


	
class flexs.baselines.models.keras_model.KerasModel(model, alphabet, name, batch_size=256, epochs=20, custom_train_function=None, custom_predict_function=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/keras_model.py]

	Bases: flexs.model.Model

A wrapper around tensorflow/keras models.


	
train(sequences, labels, verbose=False)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/keras_model.py]

	Train keras model.













          

      

      

    

  

    
      
          
            
  
flexs.baselines.models.mlp

Define a baseline multilayer perceptron model.


	
class flexs.baselines.models.mlp.MLP(seq_len, hidden_size, alphabet, loss='MSE', name=None, batch_size=256, epochs=20)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/mlp.py]

	Bases: flexs.baselines.models.keras_model.KerasModel

A baseline MLP with three dense layers and relu activations.









          

      

      

    

  

    
      
          
            
  
flexs.baselines.models.noisy_abstract_model

Define the noisy abstract model class.


	
class flexs.baselines.models.noisy_abstract_model.NoisyAbstractModel(landscape, signal_strength=0.9)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/noisy_abstract_model.py]

	Bases: flexs.model.Model

Behaves like a ground truth model.

It corrupts a ground truth model with noise, which is modulated by distance
to already measured sequences.

Specifically, $hat{f}(x) = alpha^d f(x) + (1 - alpha^d) epsilon$ where
$epsilon$ is drawn from an exponential distribution with mean $f(x)$
$d$ is the edit distance to the closest measured neighbor,
and $alpha$ is the signal strength.


	
train(sequences, labels)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/noisy_abstract_model.py]

	Training step simply stores sequences and labels in a
dictionary for future lookup.













          

      

      

    

  

    
      
          
            
  
flexs.baselines.models.sklearn_models

Define scikit-learn model wrappers as well a few convenient pre-wrapped models.


	
class flexs.baselines.models.sklearn_models.LinearRegression(alphabet, **kwargs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/sklearn_models.py]

	Bases: flexs.baselines.models.sklearn_models.SklearnRegressor

Sklearn linear regression.






	
class flexs.baselines.models.sklearn_models.LogisticRegression(alphabet, **kwargs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/sklearn_models.py]

	Bases: flexs.baselines.models.sklearn_models.SklearnRegressor

Sklearn logistic regression.






	
class flexs.baselines.models.sklearn_models.RandomForest(alphabet, **kwargs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/sklearn_models.py]

	Bases: flexs.baselines.models.sklearn_models.SklearnRegressor

Sklearn random forest regressor.






	
class flexs.baselines.models.sklearn_models.SklearnClassifier(model, alphabet, name)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/sklearn_models.py]

	Bases: flexs.baselines.models.sklearn_models.SklearnModel, abc.ABC

Class for sklearn classifiers (uses model.predict_proba(…)[:, 1]).






	
class flexs.baselines.models.sklearn_models.SklearnModel(model, alphabet, name)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/sklearn_models.py]

	Bases: flexs.model.Model, abc.ABC

Base sklearn model wrapper.


	
train(sequences, labels)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/sklearn_models.py]

	Flatten one-hot sequences and train model using model.fit.










	
class flexs.baselines.models.sklearn_models.SklearnRegressor(model, alphabet, name)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/baselines/models/sklearn_models.py]

	Bases: flexs.baselines.models.sklearn_models.SklearnModel, abc.ABC

Class for sklearn regressors (uses model.predict).









          

      

      

    

  

    
      
          
            
  
flexs.landscapes

FLEXS landscapes module.



	flexs.landscapes.additive_aav_packaging

	flexs.landscapes.bert_gfp

	flexs.landscapes.rna

	flexs.landscapes.rosetta

	flexs.landscapes.tf_binding









          

      

      

    

  

    
      
          
            
  
flexs.landscapes.additive_aav_packaging

Defines the AdditiveAAVPackaging landscape and problem registry.


	
class flexs.landscapes.additive_aav_packaging.AdditiveAAVPackaging(phenotype='heart', minimum_fitness_multiplier=1, start=0, end=735, noise=0)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/additive_aav_packaging.py]

	Bases: flexs.landscape.Landscape

An Additive landscape based on data from AAV2 packaging fitness measurements.

By additive landscape, we mean that each residue at each position is given a fitness
and the fitness of the sequence is the sum of these individual fitnesses. This means
that the fitness contribution per residue is independent of the identities of the
other residues. This makes for a very simple landscape.


	
wild_type[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/additive_aav_packaging.py]

	AAV2 wild_type substring between positions start and end.


	Type

	str










	
compute_max_possible()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/additive_aav_packaging.py]

	Compute max possible fitness of any sequence (used for normalization).










	
flexs.landscapes.additive_aav_packaging.registry()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/additive_aav_packaging.py]

	Return a dictionary of problems of the form:
```{



	“problem name”: {
	“params”: …








}```

where flexs.landscapes.AdditiveAAVPackaging(**problem[“params”]) instantiates the
additive AAV packaging landscape for the given set of parameters.


	Returns

	Problems in the registry.



	Return type

	dict













          

      

      

    

  

    
      
          
            
  
flexs.landscapes.bert_gfp

Defines the BertGFPBrightness landscape.


	
class flexs.landscapes.bert_gfp.BertGFPBrightness[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/bert_gfp.py]

	Bases: flexs.landscape.Landscape

Green fluorescent protein (GFP) brightness landscape.

The oracle used in this lanscape is the transformer model
from TAPE (https://github.com/songlab-cal/tape).

To create the transformer model used here, run the command:



	```tape-train transformer fluorescence –from_pretrained bert-base 
	–batch_size 128 –gradient_accumulation_steps 10 –data_dir .```








Note that the output of this landscape is not normalized to be between 0 and 1.


	
gfp_wt_sequence[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/bert_gfp.py]

	Wild-type sequence for jellyfish
green fluorescence protein.


	Type

	str










	
gfp_wt_sequence = 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/bert_gfp.py]

	











          

      

      

    

  

    
      
          
            
  
flexs.landscapes.rna

Defines RNA binding landscape and problem registry.


	
class flexs.landscapes.rna.RNABinding(targets, seq_length, conserved_region=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/rna.py]

	Bases: flexs.landscape.Landscape

RNA binding landscape using ViennaRNA duplexfold.


	
compute_min_binding_energies()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/rna.py]

	Compute the lowest possible binding energy for each target.










	
class flexs.landscapes.rna.RNAFolding(norm_value=1)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/rna.py]

	Bases: flexs.landscape.Landscape

RNA folding landscape using ViennaRNA fold.






	
flexs.landscapes.rna.registry()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/rna.py]

	Return a dictionary of problems of the form:
`{



	“problem name”: {
	“params”: …,
“starts”: …








}`

where flexs.landscapes.RNABinding(**problem[“params”]) instantiates the
RNA binding landscape for the given set of parameters.


	Returns

	Problems in the registry.



	Return type

	dict













          

      

      

    

  

    
      
          
            
  
flexs.landscapes.rosetta

Defines the RosettaFolding landscape and problem registry.


	
class flexs.landscapes.rosetta.RosettaFolding(pdb_file, sigmoid_center, sigmoid_norm_value)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/rosetta.py]

	Bases: flexs.landscape.Landscape

This oracle scores sequences using a fixed conformation design energy.
In this case, both backbone and side chain conformations are fixed (no repacking).

In this setting, we have a 3-D structure that we’d like to design for
(given by the PDB file), so we look for sequences that might stably fold to
the given conformation.

The best way to query how well a sequence might fold to a given conformation
is to run a folding simulation, but since that is so computationally
intense, it is more common to simply calculate the energy of the sequence
if it was forced to fold into the target 3-D structure.

This is just a proxy for folding stability, but it is often an effective
one and is the approach used by RosettaDesign.

We use Rosetta’s centroid energy function instead of the full-atom one since
it is less sensitive to switching out residues without repacking side-chain
conformations.

We convert these energies to a maximization objective in the 0-1 scale by
fitness = (-energy - sigmoid_center) / sigmoid_norm_value.


	
wt_pose[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/rosetta.py]

	The original PyRosetta pose object from the .pdb file.
Call wt_pose.sequence() to get the wild type sequence.






	
get_folding_energy(sequence)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/rosetta.py]

	Return rosetta folding energy of the given sequence in
self.pose’s conformation.










	
flexs.landscapes.rosetta.registry()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/rosetta.py]

	Return a dictionary of problems of the form:
`{



	“problem name”: {
	“params”: …,








}`

where flexs.landscapes.RosettaFolding(**problem[“params”]) instantiates the
rosetta folding landscape for the given set of parameters.


	Returns

	Problems in the registry.



	Return type

	dict













          

      

      

    

  

    
      
          
            
  
flexs.landscapes.tf_binding

Define TFBinding landscape and problem registry.


	
class flexs.landscapes.tf_binding.TFBinding(landscape_file)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/tf_binding.py]

	Bases: flexs.landscape.Landscape

A landscape of binding affinity of proposed 8-mer DNA sequences to a
particular transcription factor.

We use experimental data from Barrera et al. (2016), a survey of the binding
affinity of more than one hundred and fifty transcription factors (TF) to all
possible DNA sequences of length 8.






	
flexs.landscapes.tf_binding.registry()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/landscapes/tf_binding.py]

	Return a dictionary of problems of the form:

```python
{



	“problem name”: {
	“params”: …,








where flexs.landscapes.TFBinding(**problem[“params”]) instantiates the
transcription factor binding landscape for the given set of parameters.


	Return type

	Dict[str, Dict]



	Returns

	Problems in the registry.













          

      

      

    

  

    
      
          
            
  
flexs.utils

Utility modules.

utils.sequence_utils is the most important and useful.



	flexs.utils.VAE_utils

	flexs.utils.replay_buffers

	flexs.utils.sequence_utils









          

      

      

    

  

    
      
          
            
  
flexs.utils.VAE_utils

Utility functions for A VAE generative model.


	
class flexs.utils.VAE_utils.Sampling(trainable=True, name=None, dtype=None, dynamic=False, **kwargs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Bases: tensorflow.python.keras.engine.base_layer.Layer

Uses (z_mean, z_log_var) to sample z, the vector encoding a sequence.


	
call(inputs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Sample from multivariate guassian defined by
inputs = (z_mean, z_log_var).










	
class flexs.utils.VAE_utils.VAE(seq_length, alphabet, batch_size=10, latent_dim=2, intermediate_dim=250, epochs=10, epsilon_std=1.0, beta=1, validation_split=0.2, verbose=True)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Bases: object

VAE class wrapping VAEModel, exposing an interface friendly to CbAS/DbAS.


	
calculate_log_probability(sequences, vae=None)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Calculate log probability of reconstructing a sequence.






	
generate(n_samples, existing_samples, existing_weights)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Generate n_samples new samples such that none of them
are in existing_samples.






	
train_model(samples, weights)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Train VAE on samples according to their weights.










	
class flexs.utils.VAE_utils.VAEModel(original_dim, intermediate_dim, latent_dim, **kwargs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Bases: tensorflow.python.keras.engine.training.Model

Keras implementation of VAE for CbAS/DbAS.


	
call(data)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Return the VAE’s reconstruction of data.






	
generate()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Generate a new sequence by sampling the latent space and then decoding.






	
train_step(data)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Define a custom train step taking in data and returning the loss.










	
flexs.utils.VAE_utils.pwm_to_boltzmann_weights(prob_weight_matrix, temp)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/VAE_utils.py]

	Convert pwm to boltzmann weights for categorical distribution sampling.









          

      

      

    

  

    
      
          
            
  
flexs.utils.replay_buffers

Defines replay buffers used by some explorers.


	
class flexs.utils.replay_buffers.MinSegmentTree(capacity)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Bases: flexs.utils.replay_buffers.SegmentTree

Create SegmentTree.
Taken from OpenAI baselines Github repository:
https://github.com/openai/baselines/blob/master/baselines/common/segment_tree.py


	
min(start=0, end=0)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Return min(arr[start], …,  arr[end]).


	Return type

	float














	
class flexs.utils.replay_buffers.PrioritizedReplayBuffer(obs_dim, size, batch_size=32, alpha=0.6)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Bases: flexs.utils.replay_buffers.ReplayBuffer

Prioritized Replay buffer.


	
max_priority[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	max priority


	Type

	float










	
tree_ptr[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	next index of tree


	Type

	int










	
alpha[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	alpha parameter for prioritized replay buffer


	Type

	float










	
sum_tree[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	sum tree for prior


	Type

	SumSegmentTree










	
min_tree[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	min tree for min prior to get max weight


	Type

	MinSegmentTree










	
sample_batch(beta=0.4)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Sample a batch of experiences.


	Return type

	Dict[str, ndarray]










	
store(obs, act, rew, next_obs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Store experience and priority.






	
update_priorities(indices, priorities)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Update priorities of sampled transitions.










	
class flexs.utils.replay_buffers.ReplayBuffer(obs_dim, size, batch_size=128)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Bases: object

A simple numpy replay buffer.


	
sample_batch()[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Sample batch of timesteps from replay buffer.


	Return type

	Dict[str, ndarray]










	
store(obs, act, rew, next_obs)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Store timestep in replay buffer.










	
class flexs.utils.replay_buffers.SegmentTree(capacity, operation, init_value)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Bases: object

Create SegmentTree.
Taken from OpenAI baselines Github repository:
https://github.com/openai/baselines/blob/master/baselines/common/segment_tree.py


	
capacity[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	
	Type

	int










	
tree[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	
	Type

	list










	
operation[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	
	Type

	function










	
operate(start=0, end=0)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Return result of applying self.operation.


	Return type

	float














	
class flexs.utils.replay_buffers.SumSegmentTree(capacity)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Bases: flexs.utils.replay_buffers.SegmentTree

Create SumSegmentTree.
Taken from OpenAI baselines github repository:
https://github.com/openai/baselines/blob/master/baselines/common/segment_tree.py


	
retrieve(upperbound)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Find the highest index i about upper bound in the tree


	Return type

	int










	
sum(start=0, end=0)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/replay_buffers.py]

	Return arr[start] + … + arr[end].


	Return type

	float

















          

      

      

    

  

    
      
          
            
  
flexs.utils.sequence_utils

Utility functions for manipulating sequences.


	
flexs.utils.sequence_utils.AAS = 'ILVAGMFYWEDQNHCRKSTP'[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	Amino acid alphabet for proteins (length 20 - no stop codon).


	Type

	str










	
flexs.utils.sequence_utils.BA = '01'[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	Binary alphabet ‘01’.


	Type

	str










	
flexs.utils.sequence_utils.DNAA = 'TGCA'[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	DNA alphabet (4 base pairs).


	Type

	str










	
flexs.utils.sequence_utils.RNAA = 'UGCA'[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	RNA alphabet (4 base pairs).


	Type

	str










	
flexs.utils.sequence_utils.construct_mutant_from_sample(pwm_sample, one_hot_base)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	Return one hot mutant, a utility function for some explorers.


	Return type

	ndarray










	
flexs.utils.sequence_utils.generate_random_mutant(sequence, mu, alphabet)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	Generate a mutant of sequence where each residue mutates with probability mu.

So the expected value of the total number of mutations is len(sequence) * mu.


	Parameters

	
	sequence (str) – Sequence that will be mutated from.


	mu (float) – Probability of mutation per residue.


	alphabet (str) – Alphabet string.






	Return type

	str



	Returns

	Mutant sequence string.










	
flexs.utils.sequence_utils.generate_random_sequences(length, number, alphabet)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	Generate random sequences of particular length.


	Return type

	List[str]










	
flexs.utils.sequence_utils.generate_single_mutants(wt, alphabet)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	Generate all single mutants of wt.


	Return type

	List[str]










	
flexs.utils.sequence_utils.one_hot_to_string(one_hot, alphabet)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	Return the sequence string representing a one-hot vector according to an alphabet.


	Parameters

	
	one_hot (Union[List[List[int]], ndarray]) – One-hot of shape (len(sequence), len(alphabet) representing
a sequence.


	alphabet (str) – Alphabet string (assigns each character an index).






	Return type

	str



	Returns

	Sequence string representation of one_hot.










	
flexs.utils.sequence_utils.string_to_one_hot(sequence, alphabet)[source] [https://github.com/samsinai/FLSD-Sandbox/tree/master/flexs/utils/sequence_utils.py]

	Return the one-hot representation of a sequence string according to an alphabet.


	Parameters

	
	sequence (str) – Sequence string to convert to one_hot representation.


	alphabet (str) – Alphabet string (assigns each character an index).






	Return type

	ndarray



	Returns

	One-hot numpy array of shape (len(sequence), len(alphabet)).













          

      

      

    

  

    
      
          
            

   Python Module Index


   
   f
   


   
     		 	

     		
       f	

     
       	[image: -]
       	
       flexs	
       

     
       	
       	   
       flexs.baselines	
       

     
       	
       	   
       flexs.baselines.explorers	
       

     
       	
       	   
       flexs.baselines.explorers.adalead	
       

     
       	
       	   
       flexs.baselines.explorers.bo	
       

     
       	
       	   
       flexs.baselines.explorers.cbas_dbas	
       

     
       	
       	   
       flexs.baselines.explorers.cmaes	
       

     
       	
       	   
       flexs.baselines.explorers.dqn	
       

     
       	
       	   
       flexs.baselines.explorers.dyna_ppo	
       

     
       	
       	   
       flexs.baselines.explorers.environments	
       

     
       	
       	   
       flexs.baselines.explorers.environments.dyna_ppo	
       

     
       	
       	   
       flexs.baselines.explorers.environments.ppo	
       

     
       	
       	   
       flexs.baselines.explorers.genetic_algorithm	
       

     
       	
       	   
       flexs.baselines.explorers.ppo	
       

     
       	
       	   
       flexs.baselines.explorers.random	
       

     
       	
       	   
       flexs.baselines.models	
       

     
       	
       	   
       flexs.baselines.models.adaptive_ensemble	
       

     
       	
       	   
       flexs.baselines.models.cnn	
       

     
       	
       	   
       flexs.baselines.models.global_epistasis_model	
       

     
       	
       	   
       flexs.baselines.models.keras_model	
       

     
       	
       	   
       flexs.baselines.models.mlp	
       

     
       	
       	   
       flexs.baselines.models.noisy_abstract_model	
       

     
       	
       	   
       flexs.baselines.models.sklearn_models	
       

     
       	
       	   
       flexs.ensemble	
       

     
       	
       	   
       flexs.evaluate	
       

     
       	
       	   
       flexs.explorer	
       

     
       	
       	   
       flexs.landscape	
       

     
       	
       	   
       flexs.landscapes	
       

     
       	
       	   
       flexs.landscapes.additive_aav_packaging	
       

     
       	
       	   
       flexs.landscapes.bert_gfp	
       

     
       	
       	   
       flexs.landscapes.rna	
       

     
       	
       	   
       flexs.landscapes.rosetta	
       

     
       	
       	   
       flexs.landscapes.tf_binding	
       

     
       	
       	   
       flexs.model	
       

     
       	
       	   
       flexs.types	
       

     
       	
       	   
       flexs.utils	
       

     
       	
       	   
       flexs.utils.replay_buffers	
       

     
       	
       	   
       flexs.utils.sequence_utils	
       

     
       	
       	   
       flexs.utils.VAE_utils	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 


A


  	
      	AAS (in module flexs.utils.sequence_utils)


      	action_spec() (flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironment method)

      
        	(flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironmentMutative method)


        	(flexs.baselines.explorers.environments.ppo.PPOEnvironment method)


      


      	Adalead (class in flexs.baselines.explorers.adalead)


      	AdaptiveEnsemble (class in flexs.baselines.models.adaptive_ensemble)


  

  	
      	adaptivity() (in module flexs.evaluate)


      	add_last_seq_in_trajectory() (flexs.baselines.explorers.dyna_ppo.DynaPPO method)

      
        	(flexs.baselines.explorers.dyna_ppo.DynaPPOMutative method)


        	(flexs.baselines.explorers.ppo.PPO method)


      


      	AdditiveAAVPackaging (class in flexs.landscapes.additive_aav_packaging)


      	alpha (flexs.utils.replay_buffers.PrioritizedReplayBuffer attribute)


  





B


  	
      	BA (in module flexs.utils.sequence_utils)


      	batch_size() (flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironment property)


      	batched() (flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironment method)


  

  	
      	BertGFPBrightness (class in flexs.landscapes.bert_gfp)


      	BO (class in flexs.baselines.explorers.bo)


      	build_q_network() (in module flexs.baselines.explorers.dqn)


  





C


  	
      	calculate_log_probability() (flexs.utils.VAE_utils.VAE method)


      	calculate_next_q_values() (flexs.baselines.explorers.dqn.DQN method)


      	call() (flexs.utils.VAE_utils.Sampling method)

      
        	(flexs.utils.VAE_utils.VAEModel method)


      


      	capacity (flexs.utils.replay_buffers.SegmentTree attribute)


      	CbAS (class in flexs.baselines.explorers.cbas_dbas)


  

  	
      	CMAES (class in flexs.baselines.explorers.cmaes)


      	CNN (class in flexs.baselines.models.cnn)


      	combine_with (flexs.ensemble.Ensemble attribute)


      	compute_max_possible() (flexs.landscapes.additive_aav_packaging.AdditiveAAVPackaging method)


      	compute_min_binding_energies() (flexs.landscapes.rna.RNABinding method)


      	construct_mutant_from_sample() (in module flexs.utils.sequence_utils)


      	cost (flexs.landscape.Landscape attribute)


  





D


  	
      	DNAA (in module flexs.utils.sequence_utils)


      	DQN (class in flexs.baselines.explorers.dqn)


      	DynaPPO (class in flexs.baselines.explorers.dyna_ppo)


  

  	
      	DynaPPOEnsemble (class in flexs.baselines.explorers.dyna_ppo)


      	DynaPPOEnvironment (class in flexs.baselines.explorers.environments.dyna_ppo)


      	DynaPPOEnvironmentMutative (class in flexs.baselines.explorers.environments.dyna_ppo)


      	DynaPPOMutative (class in flexs.baselines.explorers.dyna_ppo)


  





E


  	
      	efficiency() (in module flexs.evaluate)


      	EI() (flexs.baselines.explorers.bo.BO method)


  

  	
      	Ensemble (class in flexs.ensemble)


      	Explorer (class in flexs.explorer)


  





F


  	
      	flexs (module)


      	flexs.baselines (module)


      	flexs.baselines.explorers (module)


      	flexs.baselines.explorers.adalead (module)


      	flexs.baselines.explorers.bo (module)


      	flexs.baselines.explorers.cbas_dbas (module)


      	flexs.baselines.explorers.cmaes (module)


      	flexs.baselines.explorers.dqn (module)


      	flexs.baselines.explorers.dyna_ppo (module)


      	flexs.baselines.explorers.environments (module)


      	flexs.baselines.explorers.environments.dyna_ppo (module)


      	flexs.baselines.explorers.environments.ppo (module)


      	flexs.baselines.explorers.genetic_algorithm (module)


      	flexs.baselines.explorers.ppo (module)


      	flexs.baselines.explorers.random (module)


      	flexs.baselines.models (module)


      	flexs.baselines.models.adaptive_ensemble (module)


      	flexs.baselines.models.cnn (module)


      	flexs.baselines.models.global_epistasis_model (module)


      	flexs.baselines.models.keras_model (module)


  

  	
      	flexs.baselines.models.mlp (module)


      	flexs.baselines.models.noisy_abstract_model (module)


      	flexs.baselines.models.sklearn_models (module)


      	flexs.ensemble (module)


      	flexs.evaluate (module)


      	flexs.explorer (module)


      	flexs.landscape (module)


      	flexs.landscapes (module)


      	flexs.landscapes.additive_aav_packaging (module)


      	flexs.landscapes.bert_gfp (module)


      	flexs.landscapes.rna (module)


      	flexs.landscapes.rosetta (module)


      	flexs.landscapes.tf_binding (module)


      	flexs.model (module)


      	flexs.types (module)


      	flexs.utils (module)


      	flexs.utils.replay_buffers (module)


      	flexs.utils.sequence_utils (module)


      	flexs.utils.VAE_utils (module)


      	forward() (flexs.baselines.explorers.dqn.Q_Network method)


  





G


  	
      	generate() (flexs.utils.VAE_utils.VAE method)

      
        	(flexs.utils.VAE_utils.VAEModel method)


      


      	generate_random_mutant() (in module flexs.utils.sequence_utils)


      	generate_random_sequences() (in module flexs.utils.sequence_utils)


      	generate_single_mutants() (in module flexs.utils.sequence_utils)


      	GeneticAlgorithm (class in flexs.baselines.explorers.genetic_algorithm)


      	get_action_and_mutant() (flexs.baselines.explorers.dqn.DQN method)


  

  	
      	get_cached_fitness() (flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironment method)


      	get_fitness() (flexs.landscape.Landscape method)


      	get_folding_energy() (flexs.landscapes.rosetta.RosettaFolding method)


      	get_state_string() (flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironmentMutative method)

      
        	(flexs.baselines.explorers.environments.ppo.PPOEnvironment method)


      


      	gfp_wt_sequence (flexs.landscapes.bert_gfp.BertGFPBrightness attribute), [1]


      	GlobalEpistasisModel (class in flexs.baselines.models.global_epistasis_model)


      	GPR_BO (class in flexs.baselines.explorers.bo)


  





I


  	
      	initialize_data_structures() (flexs.baselines.explorers.bo.BO method)

      
        	(flexs.baselines.explorers.dqn.DQN method)


      


  





K


  	
      	KerasModel (class in flexs.baselines.models.keras_model)


  





L


  	
      	Landscape (class in flexs.landscape)


      	LandscapeAsModel (class in flexs.model)


  

  	
      	LinearRegression (class in flexs.baselines.models.sklearn_models)


      	LogisticRegression (class in flexs.baselines.models.sklearn_models)


  





M


  	
      	max_priority (flexs.utils.replay_buffers.PrioritizedReplayBuffer attribute)


      	min() (flexs.utils.replay_buffers.MinSegmentTree method)


      	min_tree (flexs.utils.replay_buffers.PrioritizedReplayBuffer attribute)


  

  	
      	MinSegmentTree (class in flexs.utils.replay_buffers)


      	MLP (class in flexs.baselines.models.mlp)


      	Model (class in flexs.model)


      	models (flexs.ensemble.Ensemble attribute)


  





N


  	
      	name (flexs.landscape.Landscape attribute)


  

  	
      	NoisyAbstractModel (class in flexs.baselines.models.noisy_abstract_model)


  





O


  	
      	observation_spec() (flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironment method)

      
        	(flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironmentMutative method)


        	(flexs.baselines.explorers.environments.ppo.PPOEnvironment method)


      


  

  	
      	one_hot_to_string() (in module flexs.utils.sequence_utils)


      	operate() (flexs.utils.replay_buffers.SegmentTree method)


      	operation (flexs.utils.replay_buffers.SegmentTree attribute)


  





P


  	
      	pick_action() (flexs.baselines.explorers.bo.BO method)

      
        	(flexs.baselines.explorers.dqn.DQN method)


      


      	PPO (class in flexs.baselines.explorers.ppo)


      	PPOEnvironment (class in flexs.baselines.explorers.environments.ppo)


      	PrioritizedReplayBuffer (class in flexs.utils.replay_buffers)


      	propose_sequences() (flexs.baselines.explorers.adalead.Adalead method)

      
        	(flexs.baselines.explorers.bo.BO method)


        	(flexs.baselines.explorers.bo.GPR_BO method)


        	(flexs.baselines.explorers.cbas_dbas.CbAS method)


        	(flexs.baselines.explorers.cmaes.CMAES method)


        	(flexs.baselines.explorers.dqn.DQN method)


        	(flexs.baselines.explorers.dyna_ppo.DynaPPO method)


        	(flexs.baselines.explorers.dyna_ppo.DynaPPOMutative method)


        	(flexs.baselines.explorers.genetic_algorithm.GeneticAlgorithm method)


        	(flexs.baselines.explorers.ppo.PPO method)


        	(flexs.baselines.explorers.random.Random method)


        	(flexs.explorer.Explorer method)


      


  

  	
      	propose_sequences_via_greedy() (flexs.baselines.explorers.bo.GPR_BO method)


      	propose_sequences_via_thompson() (flexs.baselines.explorers.bo.GPR_BO method)


      	propose_sequences_via_ucb() (flexs.baselines.explorers.bo.GPR_BO method)


      	pwm_to_boltzmann_weights() (in module flexs.utils.VAE_utils)


  





Q


  	
      	Q_Network (class in flexs.baselines.explorers.dqn)


  

  	
      	q_network_loss() (flexs.baselines.explorers.dqn.DQN method)


  





R


  	
      	r2_weights() (in module flexs.baselines.models.adaptive_ensemble)


      	Random (class in flexs.baselines.explorers.random)


      	RandomForest (class in flexs.baselines.models.sklearn_models)


      	registry() (in module flexs.landscapes.additive_aav_packaging)

      
        	(in module flexs.landscapes.rna)


        	(in module flexs.landscapes.rosetta)


        	(in module flexs.landscapes.tf_binding)


      


      	ReplayBuffer (class in flexs.utils.replay_buffers)


  

  	
      	reset() (flexs.baselines.explorers.bo.GPR_BO method)


      	retrieve() (flexs.utils.replay_buffers.SumSegmentTree method)


      	RNAA (in module flexs.utils.sequence_utils)


      	RNABinding (class in flexs.landscapes.rna)


      	RNAFolding (class in flexs.landscapes.rna)


      	robustness() (in module flexs.evaluate)


      	RosettaFolding (class in flexs.landscapes.rosetta)


      	run() (flexs.explorer.Explorer method)


  





S


  	
      	sample() (flexs.baselines.explorers.dqn.DQN method)


      	sample_actions() (flexs.baselines.explorers.bo.BO method)


      	sample_batch() (flexs.utils.replay_buffers.PrioritizedReplayBuffer method)

      
        	(flexs.utils.replay_buffers.ReplayBuffer method)


      


      	Sampling (class in flexs.utils.VAE_utils)


      	SegmentTree (class in flexs.utils.replay_buffers)


      	sequence_density() (flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironment method)

      
        	(flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironmentMutative method)


      


      	set_fitness_model_to_gt() (flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironment method)

      
        	(flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironmentMutative method)


      


  

  	
      	SklearnClassifier (class in flexs.baselines.models.sklearn_models)


      	SklearnModel (class in flexs.baselines.models.sklearn_models)


      	SklearnRegressor (class in flexs.baselines.models.sklearn_models)


      	store() (flexs.utils.replay_buffers.PrioritizedReplayBuffer method)

      
        	(flexs.utils.replay_buffers.ReplayBuffer method)


      


      	string_to_one_hot() (in module flexs.utils.sequence_utils)


      	sum() (flexs.utils.replay_buffers.SumSegmentTree method)


      	sum_tree (flexs.utils.replay_buffers.PrioritizedReplayBuffer attribute)


      	SumSegmentTree (class in flexs.utils.replay_buffers)


  





T


  	
      	TFBinding (class in flexs.landscapes.tf_binding)


      	Thompson_sample() (flexs.baselines.explorers.bo.BO static method)


      	time_step_spec() (flexs.baselines.explorers.environments.dyna_ppo.DynaPPOEnvironment method)


      	train() (flexs.baselines.explorers.dyna_ppo.DynaPPOEnsemble method)

      
        	(flexs.baselines.models.adaptive_ensemble.AdaptiveEnsemble method)


        	(flexs.baselines.models.keras_model.KerasModel method)


        	(flexs.baselines.models.noisy_abstract_model.NoisyAbstractModel method)


        	(flexs.baselines.models.sklearn_models.SklearnModel method)


        	(flexs.ensemble.Ensemble method)


        	(flexs.model.LandscapeAsModel method)


        	(flexs.model.Model method)


      


  

  	
      	train_actor() (flexs.baselines.explorers.dqn.DQN method)


      	train_model() (flexs.utils.VAE_utils.VAE method)


      	train_models() (flexs.baselines.explorers.bo.BO method)


      	train_step() (flexs.utils.VAE_utils.VAEModel method)


      	training (flexs.baselines.explorers.dqn.Q_Network attribute)


      	tree (flexs.utils.replay_buffers.SegmentTree attribute)


      	tree_ptr (flexs.utils.replay_buffers.PrioritizedReplayBuffer attribute)


  





U


  	
      	UCB() (flexs.baselines.explorers.bo.BO static method)


  

  	
      	update_priorities() (flexs.utils.replay_buffers.PrioritizedReplayBuffer method)


  





V


  	
      	VAE (class in flexs.utils.VAE_utils)


  

  	
      	VAEModel (class in flexs.utils.VAE_utils)


  





W


  	
      	wild_type (flexs.landscapes.additive_aav_packaging.AdditiveAAVPackaging attribute)


  

  	
      	wt_pose (flexs.landscapes.rosetta.RosettaFolding attribute)


  







          

      

      

    

  

    
      
          
            
  [image: FLEX]
[image: build status]
 [https://github.com/samsinai/FLEXS/actions][image: Documentation Status]
 [https://flexs.readthedocs.io/en/latest/?badge=latest][image: PyPI package]
 [https://pypi.org/project/https://github.com/samsinai/FLEXS/blob/master/flexs/]💪 FLEXS is an open-source simulation environment that enables you to develop and compare model-guided biological sequence design algorithms. This project was developed with support from Dyno Therapeutics [https://www.dynotx.com].


	Installation


	Overview


	Tutorial [https://github.com/samsinai/FLEXS/blob/master/examples/Tutorial.ipynb]


	Contribution and credits


	Components


	Ground truth landscapes


	Noisy oracles


	Exploration algorithms


	Bring your own explorer













Installation

FLEXS is available on PyPI [https://pypi.org/project/flexs/] 🐍 and can be installed with pip install flexs.

There are two optional, but very useful dependencies, ViennaRNA [https://www.tbi.univie.ac.at/RNA/] (for RNA binding landscapes) and PyRosetta [http://www.pyrosetta.org] (for protein design landscapes). These can both be installed with conda:

$ conda install -c bioconda viennarna
$ conda install pyrosetta  # Set up RosettaCommons conda channel first (http://www.pyrosetta.org/dow)





Note that PyRosetta requires a commercial license if not being used for academic purposes.

If contributing or running paper code/experiments, we recommend that you install the dependencies for the sandbox in a conda virtual environment. You can update an existing conda environment with conda env update --name {name} --file environment.yml or initialize a new one with conda env create -f environment.yml. Then install the local version of flexs with pip install -e . in the root directory.




Overview

Biological sequence design through machine-guided directed evolution has been of increasing interest. This process often involves two closely connected steps:


	Models f that attempt to learn the ground truth sequence to function relationship g(x) = y.


	Algorithms that explore the sequence space with the help of the trained model f.





While in some cases, these two steps are learned simultaneously, it is fairly common to have access to a well-trained model f which is not invertible. Namely, given a sequence x, the model can estimate y' (with variable accuracy), but it cannot generate a sequence x' associated with a specific function y. Therefore it is valuable to develop exploration algorithms E(f) that make use of the model f to propose sequences x'.

We implement a simulation environment that allows you to develop or port landscape exploration algorithms for a variety of challenging tasks. Our environment allows you to abstract away the model f = Noisy_abstract_model(g) or employ empirical models (like Keras/Pytorch or Sklearn models). You can see how these work in the **tutorial [https://github.com/samsinai/FLEXS/blob/master/examples/Tutorial.ipynb]**.




Our abstraction is comprised of four levels:


1.  Fitness Landscapes 🏔️

These oracles g are simulators that are assumed as ground truth, i.e. when queried, they return the true value y_i associated with a sequence x_i. Currently we have four classes of ground truth oracles implemented.


	*Transcription factor binding data*. This is comprised of 158 (experimentally) fully characterized landscapes.


	*RNA landscapes*. A set of curated and increasingly challenging RNA binding landscapes as simulated with ViennaRNA.


	*AAV Additive Tropism*. A hypothesized noisy additive protein landscape based on tissue tropism of single mutant AAV2 capsid protein.


	*GFP fluorescence*. Fluorescence of GFP protein as predicted by TAPE transformer model.


	*Rosetta-based design*. Rosetta-based design task for 3MSI anti-freeze protein.




For all landscapes we also provide a fixed set of initial points with different degrees of previous optimization, so that the relative strength of algorithms when starting from locations near or far away from peaks can be evaluated.




2. Noisy oracles

Noisy oracles are (approximate) models f of the original ground truth landscape g. These allow for the exploration algorithm to screen sequences virtually, before committing to making expensive queries to g.  We implement two flavors of these


	Noisy abstract models: Noise corrupted version of g (this allows for independent study of exploration algorithms).


	Empirical models: f is learned directly from the data that was collected so far.







3. Exploration algorithms 🕵️


Exploration algorithms have access to f with some limit on the number of queries to this oracle virtual_screen. Once they have queried that many samples, they would commit to measuring batch_size from the ground truth, which incurrs a real cost. The class base_explorer implements the housekeeping tasks, and new exploration algorithms can be implemented by inheriting from it.







4. Evaluators 📊

We also implement a suite of evaluation modules [https://github.com/samsinai/FLEXS/blob/master/flexs/evaluate.py] that automatically collect data that is necessary for evaluating algorithms on different performance criteria.


	robustness: Produces data for analyzing how explorer performance changes given different quality of models.


	efficiency: Produces data for analyzing how explorer performance changes when more computational evaluations are allowed.


	adaptivity: Produces data for analyzing how the explorer is sensitive to the number of batches it is allowed to sample, given a fixed total budget.




See the tutorial [https://github.com/samsinai/FLEXS/blob/master/examples/Tutorial.ipynb] for an example of how these can be run.






Contributions and credits 🤩

Your PR and contributions to this sandbox are most welcome. If you make use of data or algorithms in this sandbox, please ensure that you cite the relevant original articles upon which this work was made possible (we provide links in this readme). To cite the sandbox itself:

@article{sinai2020adalead,
  title={AdaLead: A simple and robust adaptive greedy search algorithm for sequence design},
  author={Sinai, Sam and Wang, Richard and Whatley, Alexander and Slocum, Stewart and Locane, Elina and Kelsic, Eric},
  journal={arXiv preprint},
  year={2020}
}





FLEXS 0.2.1 was developed by Sam Sinai, Richard Wang, Alexander Whatley, Elina Locane, and Stewart Slocum.




Components


Transcription Factor Binding

Barrera et al. (2016) surveyed the binding affinity of more than one hundred and fifty transcription factors (TF) to all possible DNA sequences of length 8. Since the ground truth is entirely characterized, and biological, it is a relevant benchmark for our purpose. These generate the full picture for landscapes of size 4^8. We shift the function distribution such that y is within [0,1], and therefore optimal(y)=1. We also provide 15 initiation sequences with different degrees of optimization across landscapes. The sequence TTAATTAA for instance is a famous binding site that is a global peak in 20 of these landscapes, and a local peak (above all its single mutant neighbors) in 96 landscapes overall. GCTCGAGC is a local peak in 106 landscapes, whereas AAAGAGAG is not a peak in any of the 158 landscapes. It is notable that while complete, these landscapes are generally easy to optimize on due to their size. So we recommend that they are tested in very low-budget setting or additional classes of landscapes are used for benchmarking.

@article{barrera2016survey,
  title={Survey of variation in human transcription factors reveals prevalent DNA binding changes},
  author={Barrera, Luis A and Vedenko, Anastasia and Kurland, Jesse V and Rogers, Julia M and Gisselbrecht, Stephen S and Rossin, Elizabeth J and Woodard, Jaie and Mariani, Luca and Kock, Kian Hong and Inukai, Sachi and others},
  journal={Science},
  volume={351},
  number={6280},
  pages={1450--1454},
  year={2016},
  publisher={American Association for the Advancement of Science}
}








RNA Landscapes

Predicting RNA secondary structures is a well-studied problem. There are efficient and accurate dynamic programming approaches to calculates secondary structure of short RNA sequences. These landscapes give us a good proxy for a consistent oracle over entire domain of large landscapes.  We use the ViennaRNA [https://www.tbi.univie.ac.at/RNA/] package to simulate binding landscapes of RNA sequences as a ground truth oracle.

Our sandbox allows for constructing arbitrarily complex landscapes (although we discourage large RNA sequences as the accuracy of the simulator deteriorates above 200 nucleotides). As benchmark, we provide a series of 36 increasingly complex RNA binding landscapes. These landscapes each come with at least 5 suggested starting sequences, with various initial optimization.

The simplest landscapes are binding landscapes with a single hidden target (often larger than the design sequence resulting in multiple peaks). The designed sequences is meant to be optimized to bind the target with the minimum binding energy (we use duplex energy as our objective). We estimate optimal(y) by computing the binding energy of the perfect complement of the target and normalize the fitnesses using that measure (hence this is only an approximation and often a slight underestimate). RNA landscapes show many local peaks, and often multiple global peaks due to symmetry.

Additionally, we construct more complex landscapes by increasing the number of hidden targets, enforcing specific conservation patterns, and composing the scores of each landscapes multiplicatively. See multi-dimensional models [https://github.com/samsinai/FLEXS/blob/master/flexs/ensemble.py] for the generic class that allows composing landscapes.

@article{lorenz2011viennarna,
  title={{ViennaRNA} Package 2.0},
  author={Lorenz, Ronny and Bernhart, Stephan H and Zu Siederdissen, Christian H{\"o}ner and Tafer, Hakim and Flamm, Christoph and Stadler, Peter F and Hofacker, Ivo L},
  journal={Algorithms for molecular biology},
  volume={6},
  number={1},
  pages={26},
  year={2011},
  publisher={Springer}
}








Additive AAV landscapes


Ogden et al. (2019) perform a comprehensive single mutation scan of AAV2 capsid protein, assaying tropism for five different target tissues. The authors show that an additive model is informative about the local structure of the landscape. Here we use the data from the single mutations to generate a toy additive model. Here y' := sum(s_i)+ e, where i indicates the position across the sequences, and s_i indicates a sequence with mutation s at position i and e indicates iid Gaussian noise. This construct is also known as “Rough Mt. Fuji” (RMF) and many empirical fitness landscapes are consistent with an RMF local structure around viable natural sequences with unpredictable regions in between. In the noise-free setting, the RMF landscape is convex with a single peak. We allow the construction of multiple target tissues, and different design lengths (tasks ranging from desiging short region of the protein to tasks that encompass designing the full protein). The scores are normalized between [0,1].




@article{ogden2019comprehensive,
  title={Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design},
  author={Ogden, Pierce J and Kelsic, Eric D and Sinai, Sam and Church, George M},
  journal={Science},
  volume={366},
  number={6469},
  pages={1139--1143},
  year={2019},
  publisher={American Association for the Advancement of Science}
}








GFP


In TAPE [https://github.com/songlab-cal/tape], the authors benchmark multiple machine learning methods on a set of tasks including GFP fluorescence prediction. The GFP task is comprised of training and predicting fluorescence values on approximately 52,000 protein sequences of length 238 which are derived from the naturally occurring GFP in Aequorea victoria (See this paper [https://www.nature.com/articles/nature17995]). Downloading and doing inference with this model is memory and time intensive. These landscapes are not normalized and therefore scores higher than 1 are possible (we do not know the maximum activation for the model).




@inproceedings{tape2019,
    author = {Rao, Roshan and Bhattacharya, Nicholas and Thomas, Neil and Duan, Yan and Chen, Xi and Canny, John and Abbeel, Pieter and Song, Yun S},
    title = {Evaluating Protein Transfer Learning with TAPE},
    booktitle = {Advances in Neural Information Processing Systems}
    year = {2019}
}

@article{sarkisyan2016local,
  title={Local fitness landscape of the green fluorescent protein},
  author={Sarkisyan, Karen S and Bolotin, Dmitry A and Meer, Margarita V and Usmanova, Dinara R and Mishin, Alexander S and Sharonov, George V and Ivankov, Dmitry N and Bozhanova, Nina G and Baranov, Mikhail S and Soylemez, Onuralp and others},
  journal={Nature},
  volume={533},
  number={7603},
  pages={397--401},
  year={2016},
  publisher={Nature Publishing Group}
}








Rosetta-based Design

Rosetta [https://www.rosettacommons.org/software] is a protein modeling software suite used for de novo design and structure prediction. Based on the principle that structure determines function, the Rosetta design process begins with a desired 3-D protein conformation and tries to find amino acid sequences that are likely to fold to that structure. While the dynamics of protein folding are still poorly understood, this approach has proven remarkably effective in practice, and so we find it an acceptable analogue to the true fitness landscape. To keep our experiments computationally feasible, we omit the expensive step of side-chain packing and use the simplified centroid scoring frounction as our objective. We use the PyRosetta [http://www.pyrosetta.org] Python interface to Rosetta. The Rosetta design objective function is a scaled estimate of the folding energy, which has been found to be an indicator of the probability that a sequence will fold to the desired structure. As an example, we provide an optimization challenge for the structure of 3MSI, a 66 amino acid antifreeze protein found in the ocean pout starting from 5 sequences with 3-27 mutations from the wildtype. Here, we normalize energy scores by scaling and shifting their distribution and then applying the sigmoid function.

@article{chaudhury2010pyrosetta,
  title={PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta},
  author={Chaudhury, Sidhartha and Lyskov, Sergey and Gray, Jeffrey J},
  journal={Bioinformatics},
  volume={26},
  number={5},
  pages={689--691},
  year={2010},
  publisher={Oxford University Press}
}






Noisy Oracles






Noisy Abstract Models

These models get access to the ground truth g, but do not allow the explorer to access g directly. They corrupt the signal from g but adding noise to it, proportional to the distance of the query from the (nearest) observed data. The parameter signal_strength which is between 0 (no signal) and 1 (perfect model) determines the rate of decay.




Empirical Models

These models train a standard algorithm on the observed data. Some baseline models can be found in https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/models. All landscapes and models can also be ensembled using the ensemble class [https://github.com/samsinai/FLEXS/blob/master/flexs/ensemble.py]. Ensembles also have the ability to be adaptive i.e. the models within an ensemble will be reweighted based on their accuracy on the last measured set.


Exploration Algorithms






Bring your own explorer

Exploration algorithms are search methods that use noisy oracles to select the next batch of samples from the landscape. This is the main service of this sandbox, you can implement your own explorer by simply inheriting from the Base Explorer [https://github.com/samsinai/FLEXS/blob/master/flexs/explorer.py], and implementing a single method:

class MyExplorer(flexs.Explorer):
    """Your explorer here"""
    def __init__(self,
                 model,
                 rounds,
                 starting_sequence,
                 sequences_batch_size,
                 model_queries_per_batch,
                 **kwargs):

        name = f"MyExplorer_{**kwargs}"
        super().__init__(
            model,
            name,
            rounds,
            sequences_batch_size,
            model_queries_per_batch,
            starting_sequence,
        )
        "Your custom attributes here"

    def propose_sequences(self, measured_sequences_data):
        """
        Your method implementation overriding the main explorer.
        It is allowed to make *model_queries_per_batch* queries to the model
        and make *sequences_batch_size* proposals in return.
        """

        return sequences, scores








Baseline Explorers


	Random Explorer [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/random.py]: A baseline random explorer.







Evolutionary Algorithms


	Naive Genetic Algorithm, Wright-Fisher [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/genetic_algorithm.py]: A standard Wright-Fisher process that has access to an oracle for pre-screening.


	CMA-ES [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/cmaes.py]: The CMA-ES algorithm that optimizes a continuous relaxation of one-hot vectors encoding sequences (another evolutionary baseline).


	ADALEAD [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/adalead.py] ⭐️: ADALEAD is our recommended “benchmark” algorithm as it is robust to hyperparameters, and is relatively fast in execution. It also compares strongly to other state of the art algorithms.




@article{sinai2020adalead,
  title={AdaLead: A simple and robust adaptive greedy search algorithm for sequence design},
  author={Sinai, Sam and Wang, Richard and Whatley, Alexander and Slocum, Stewart and Locane, Elina and Kelsic, Eric},
  journal={arXiv preprint},
  year={2020}
}








DbAS and CbAS


	CbAS and DbAS [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/explorers/cbas_dbas.py]




@article{brookes2019conditioning,
  title={Conditioning by adaptive sampling for robust design},
  author={Brookes, David H and Park, Hahnbeom and Listgarten, Jennifer},
  journal={arXiv preprint arXiv:1901.10060},
  year={2019}
}
@article{brookes2018design,
  title={Design by adaptive sampling},
  author={Brookes, David H and Listgarten, Jennifer},
  journal={arXiv preprint arXiv:1810.03714},
  year={2018}
}








Reinforcement Learning Algorithms


	DQN [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/dqn_explorer.py]


	PPO [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/ppo.py]


	DyNAPPO [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/dyna_ppo.py]: See the following citation.

@inproceedings{angermueller2019model,
title={Model-based reinforcement learning for biological sequence design},
author={Angermueller, Christof and Dohan, David and Belanger, David and Deshpande, Ramya and Murphy, Kevin and Colwell, Lucy},
booktitle={International Conference on Learning Representations},
year={2019}
}












Bayesian Optimization


	Evolutionary/Enumerative BO [https://github.com/samsinai/FLEXS/blob/master/flexs/baselines/explorers/bo.py]: Bayesian optimization with sparse sampling of the mutation space. A fully enumerated (when possible) is also implemented mutation space.










          

      

      

    

  

    
      
          
            
  
flexs



	flexs
	flexs.ensemble

	flexs.evaluate

	flexs.explorer

	flexs.landscape

	flexs.model

	flexs.types

	flexs.baselines
	flexs.baselines.explorers
	flexs.baselines.explorers.adalead

	flexs.baselines.explorers.bo

	flexs.baselines.explorers.cbas_dbas

	flexs.baselines.explorers.cmaes

	flexs.baselines.explorers.dqn

	flexs.baselines.explorers.dyna_ppo

	flexs.baselines.explorers.genetic_algorithm

	flexs.baselines.explorers.ppo

	flexs.baselines.explorers.random

	flexs.baselines.explorers.environments





	flexs.baselines.models
	flexs.baselines.models.adaptive_ensemble

	flexs.baselines.models.cnn

	flexs.baselines.models.global_epistasis_model

	flexs.baselines.models.keras_model

	flexs.baselines.models.mlp

	flexs.baselines.models.noisy_abstract_model

	flexs.baselines.models.sklearn_models









	flexs.landscapes
	flexs.landscapes.additive_aav_packaging

	flexs.landscapes.bert_gfp

	flexs.landscapes.rna

	flexs.landscapes.rosetta

	flexs.landscapes.tf_binding





	flexs.utils
	flexs.utils.VAE_utils

	flexs.utils.replay_buffers

	flexs.utils.sequence_utils

















          

      

      

    

  _static/file.png





_static/minus.png





_static/favicon.png





_static/plus.png





_static/LOGO.png
Fitness
Landscape

EXpIoration
Sandbox

for model-guided biological
sequence design

1

Experiments

punoJ jejuswiiadxgy





_images/LOGO.png
Fitness
Landscape

EXpIoration
Sandbox

for model-guided biological
sequence design

1

Experiments

punoJ jejuswiiadxgy





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to FLEXS’s documentation!
        


        		
          flexs
          
            		
              flexs.ensemble
            


            		
              flexs.evaluate
            


            		
              flexs.explorer
            


            		
              flexs.landscape
            


            		
              flexs.model
            


            		
              flexs.types
            


            		
              flexs.baselines
              
                		
                  flexs.baselines.explorers
                


                		
                  flexs.baselines.models
                


              


            


            		
              flexs.landscapes
              
                		
                  flexs.landscapes.additive_aav_packaging
                


                		
                  flexs.landscapes.bert_gfp
                


                		
                  flexs.landscapes.rna
                


                		
                  flexs.landscapes.rosetta
                


                		
                  flexs.landscapes.tf_binding
                


              


            


            		
              flexs.utils
              
                		
                  flexs.utils.VAE_utils
                


                		
                  flexs.utils.replay_buffers
                


                		
                  flexs.utils.sequence_utils
                


              


            


          


        


      


    
  

